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PREFACE 
 
The Kansas Department of Transportation’s (KDOT) Kansas Transportation Research and New-
Developments (K-TRAN) Research Program funded this research project. It is an ongoing, 
cooperative and comprehensive research program addressing transportation needs of the state of 
Kansas utilizing academic and research resources from KDOT, Kansas State University and the 
University of Kansas. Transportation professionals in KDOT and the universities jointly develop 
the projects included in the research program. 
 
 
 

NOTICE 
 
The authors and the state of Kansas do not endorse products or manufacturers. Trade and 
manufacturers names appear herein solely because they are considered essential to the object of 
this report.  
 
This information is available in alternative accessible formats. To obtain an alternative format, 
contact the Office of Public Affairs, Kansas Department of Transportation, 700 SW Harrison, 2nd 
Floor – West Wing, Topeka, Kansas 66603-3745 or phone (785) 296-3585 (Voice) (TDD). 
 
 
 

DISCLAIMER 
 
The contents of this report reflect the views of the authors who are responsible for the facts and 
accuracy of the data presented herein. The contents do not necessarily reflect the views or the 
policies of the state of Kansas. This report does not constitute a standard, specification or 
regulation. 
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Abstract 

Oversize and overweight (OSOW) trucks are an integral part of traffic movement 

throughout the state of Kansas and the United States as a whole, along with the freight they haul. 

The unique dimensions (length, width, height, and weight) of these loads makes the movement of 

them more challenging, and less safe for all on the road. With key east-west and north-south 

interstate access, Kansas is often a required pass-through point for these OSOW trucks.  

The Kansas Department of Transportation (KDOT) developed an automated permitting 

system called the Kansas Truck Routing and Intelligent Permitting System (K-TRIPS) to issue 

permits for all OSOW trucks. Using four years of data from K-TRIPS (2014‒2017), the research 

team developed a series of heat maps using ArcGIS to help visualize the routes OSOW trucks were 

using to travel through the state of Kansas. It was found that around 87 percent of the 

approximately 72,000 annual OSOW trips in Kansas were taken by five industries (general 

construction equipment, general freight, agriculture equipment/implements, wind energy, and oil 

and gas equipment), and that the majority of fluctuation in the consistency of routes travelled came 

from two industries (wind energy and oil and gas equipment).  

The four years of K-TRIPS data, along with three years of crash data (2014‒2016, provided 

by KDOT), were used to develop a logistic regression to determine factors that increased the odds 

of a fatal/injury (F/I) crash occurring among OSOW crashes. This was warranted due to the fact 

that the mass action areas (or areas found to have more than one crash) aligned with the routes 

with the highest travel density, along with the discovery of two separate locations in the state with 

multiple crashes with the same sequence of events.  

It was found that three separate first harmful event (FHE) categories (other non-collision, 

motor vehicle in-transport, and fixed object) were significant and all increased the odds of an F/I 

crash occurring, if they were the FHE. The odds of an F/I crash were higher for an asphalt road 

than a concrete road. Lastly, the later into the day it was, the lower the odds are to be in an F/I 

crash.  

The research team found a unique and important connection between yearly heat maps of 

OSOW truck routing and OSOW crashes. The mass action areas were found to have similar 
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locations where K-TRIPS recorded the highest-travelled routes during the three years of the 

dataset. These findings were similar to previous research that indicated through statistical analyses 

that when the percentage of trucks increased on a roadway, the amount of predicted crashes 

increased. This finding could be a primer for the state of Kansas to upgrade safety measures on 

known truck corridors that experience a high number of OSOW trucks. The ability to reduce fatal 

or serious injury crashes involving OSOW trucks or vehicles would have a positive net benefit for 

the state of Kansas, however, considerable investment will be needed by the state to address all 

OSOW crash concerns. 
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Chapter 1: Background 

Oversize and overweight (OSOW) freight movement across the United States is becoming 

more common as the need increases to move large infrastructure components across the highway 

system for such industries as large construction projects, wind-generation components, and 

fracking for oil. OSOW trucks often require special tractors, trailers, and pilot cars to ensure 

damage to the roadway network infrastructure is limited, including access areas and local 

roadways. These large, sometimes multi-axle vehicles can encounter challenging roadway 

geometry such as horizontal curves with steep superelevation, roundabouts, and intersections with 

limited curb radii. Additionally, bridge structures not capable of handling such trailer 

configurations, including weight or dimensions, small communities with limited routes or 

roadways in poor conditions, or interaction with other passenger cars also present safety concerns. 

The Federal Highway Administration (FHWA) defines mandated parameters for maximum 

weights on interstate systems. These include 80,000-lbs gross vehicle weight (GVW) for a truck, 

20,000 lbs for a single axle, and 34,000 lbs for a tandem axle. The FHWA also states the federal 

width of a vehicle is to be 102 inches (FHWA, 2013). In addition to federal heavy-vehicle 

dimensions and weights, the State of Kansas defines large-vehicle dimensions and weight 

standards. These include a maximum of 80,000 lbs GVW on interstates, and 85,500 lbs GVW for 

all other roads. Tandem axle maximum weights are the same as the FHWA. Additionally, the 

maximum height of a vehicle (other than those carrying hay bales at 14.5 feet) is defined as 14 feet 

and 8.5 feet wide (KHP, n.d.). Pilot cars are required by the State of Kansas when the vehicle 

exceeds 14 feet in width. All superloads (GVW 150,000 lbs and greater) require a minimum of 

two pilot cars (one in the front of the load and one behind the load); however, many haulers use 

pilot cars, either due to the extreme dimensions of the load which may influence a passenger car 

driver’s behavior (e.g., wind turbine blades) or company policy. 

OSOW trucks operate similarly to large semi-tractor trailers in that drivers receive the same 

training and must obtain the same credentials. Overall, the number of truck-related fatalities for 

OSOW loads and all other large trucks have been increasing in recent years. The year 2009 had 

the lowest number of nation-wide fatalities involving large trucks since the Insurance Institute 

of Highway Safety (IIHS) began keeping records of fatal crashes (the IIHS defines large 
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trucks as any truck weighing more than 10,000 pounds).  

Since 2009, however, the number of fatalities for trucks increased from 2,223 to 3,986 in 

2016, an increase of 79 percent. The number of truck-occupant fatalities in the same time 

span increased by 47 percent (from 449 to 660). In 2016, 92 percent of all fatalities in large-truck 

crashes occurred on interstates, freeways, and other major roads (IIHS, 2018). The state of Kansas 

has also seen a trend similar to the rest of the country with respect to large-truck crashes. The 

total amount of crashes in 2016 in Kansas was 3,714, an 11 percent increase from the low of 3,195 

in 2009. The amount of fatalities from those crashes increased by 22 percent in the same time 

period. In 2016, large trucks were involved in 5.3 percent of all crashes, but accounted for 

18.9 percent of the number of fatal crashes in the state (KDOT, 2016). 

A study by the Center for Transportation Research and Education (Hallmark, Hsu, Maze, 

McDonald, & Fitzsimmons, 2009) analyzed how roadway factors affected truck crashes. 

The research team found that location was one of the most significant variables in the crash 

rates of trucks. Urban roadways had higher crash rates than rural roadways did. The authors stated 

that this was not just because urban roads generally have a higher traffic volume than rural 

roads, but because they are different road types as well. The study goes on to state that 

interstates are more likely to have truck crashes than other road types (Agent & Pigman, 2002) 

and that 16 percent of truck crashes happen at interchanges (Vallette, McGee, Sanders, Enger, & 

Hanscom, 1981), while another 40‒50 percent occur on straight and level roads (Garber & 

Joshua, 1989). 

Spainhour, Brill, Sobanjo, Wekezer, and Mtenga (2005) noted in a study that evaluated 

truck crashes in the state of Florida that urban locations experienced a higher crash rate than rural 

locations. It was found that Florida rural truck crashes accounted for 55 percent of the total crashes, 

while urban and suburban crashes made up the remaining 45 percent. It was also noted that trucks 

are less likely to have fixed object crashes or crashes on an interstate ramp (Agent & Pigman, 

2002). 

A study conducted by Dissanayake & Amarasingha (2012) investigated the relationships 

between large truck crash probabilities, geometric characteristics, and traffic characteristics. The 

study used 6 years of data from KDOT, including the Kansas Accident Reporting System (KARS) 
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and Control Section Analysis System (CANSYS) databases. Using a Poisson regression model 

and a negative binomial regression model, significant variables were found to have an effect on 

the occurrence of large truck crashes. Among the list of many significant variables that increased 

the amount of predicted crashes was the truck percentage. This means that as the truck percentage 

on a road increased, so did the predicted amount of crashes on that road. 

A study conducted by Bittner, Kleinmaier, and Levine (2010) identified the industries that 

had the highest OSOW vehicle demands for the State of Wisconsin. The wind energy industry has 

seen substantial growth in the state, with up to a 39 percent average annual growth during a five-

year period. While this improved the state’s economy by bringing in thousands of jobs, the 

infrastructure damage took its toll. As the number of loads increased, local roads became damaged, 

bridges were subjected to loads in a higher quantity than ever before, and the traffic flows in the 

towns and communities needed to be changed to accommodate the large loads. The already low 

local budgets were struggling to keep up with the added reconstruction projects that large amounts 

of OSOW vehicles brought to a community. Another high demand industry was the road and 

bridge construction industry. This industry has constantly been, and will continue to be, one of the 

main drivers of OSOW movements through a state (Adams et al., 2013). 

Russell and Landman (2012) conducted a study to optimize the analysis of routing OSOW 

through Kansas, in the hope of providing efficient freight corridors. With OSOW load movement 

through the state having a positive economic impact on the state, the authors felt that developing 

a route system for OSOW loads to travel was worth the economic burden of providing the 

geometry needed for these vehicles to travel on. The study also noted that many fixed objects on 

routes can be difficult to navigate when driving an OSOW load, like bridges, wires, signs, signals, 

utilities, etc. (Russell & Landman, 2012).  

In another OSOW study conducted in Kansas, Russell, Landman, and Godavarthy (2013) 

looked at accommodating OSOW loads at roundabouts. They found that roundabouts should have 

a truck apron, splitter island, and a curb height of three inches maximum in order for OSOW to 

safely use them without damage to the roundabout. The main cause of this finding was a special 

trailer type called a “low boy.” These trailers have a very low vertical clearance and can catch on 

a truck apron larger than three inches (Russell et al., 2013).  
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Electronic permitting for OSOW trucks is becoming a more common tool for state highway 

agencies to implement and utilize. Electronic permitting allows for efficient permitting, safer 

routing, and also provides a catalog of the types of vehicles and goods that are being used on the 

roadway network. The Texas Department of Transportation (TxDOT) Motor Carrier Division has 

created a permitting system called the Texas Permit Routing Optimization System (TxPROS; 

Middleton, Li, Le, & Koncz, 2012). TxPROS is a system that automates the OSOW permitting 

process. The major features of TxPROS include the following: 

1. Mapping: TxPROS uses a TeleAtlas transportation network along with the

TxDOT roadway inventory data to illustrate the best route selected by the

system for any given permit, given the current restrictions and impedances

at the time of the application.

2. Restriction Management: This system has the ability to find and generate

the best route to take, along with alternate routes for OSOW loads. At any

given time, there are over 1,500 physical and temporal restrictions in place

in the state of Texas, so a system that can take those ever-changing

restrictions and give the optimum route is a necessity.

3. Routing: TxPROS incorporates a routing algorithm that uses the restrictions

mentioned above and creates the optimum route, along with alternate routes,

for the size and weight of load given in the permit application.

4. Reporting: TxPROS can generate reports on parameters including permit

types and vehicle dimensions. These reports can help in identifying freight

corridors, the impact of a certain restriction in a location, or even with

researching the impacts of OSOW loads on congestion in a system.

OSOW truck permitting data have also allowed state highway agencies to adopt proposed 

policies. A study by Bilal, Irfan, Ahmed, Labi, and Sinha (2010) investigated OSOW truck permit 

and regulations from two neighboring states of Indiana: Ohio and Illinois. The research team 

collected data including fee amounts, fee structures, ease of permit acquisition, and what 

dimension policies were in place. They found that the three states have not adopted set dimensional 

and weight values for OSOW trucks. It was also found that OSOW permit fees are significantly 
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influenced by such input variables as trip circumstance, permitting criteria, trip frequency, and 

distance. The researchers also noted that the states investigated had a revenue stream (during the 

study period) of over $12 million from trucking permits and that more information is needed to 

determine roadway deterioration from OSOW trucks and the optimal number of axles for a 

specified dimension or weight. 

In summary, the research team found very limited research that specifically investigated 

OSOW trucks including crash experience, permitting, and routing. Most previous literature 

focused on large trucks in general and assumed OSOW trucks were part of this class of vehicles. 

However, as stated previously, OSOW trucks have sometimes very different dimensions, types of 

freight, pilot cars, and turning radii which complicates the driving process for not only the truck 

driver but other vehicles on the roadway.  
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Chapter 2: Research Objectives 

Oversized and overweight truck movement continues to be a necessary part of the 

movement of freight across the country and within the state of Kansas. These multi-axle tractor 

trailer trucks, spanning sometimes hundreds of feet and weighing more than a traditional semi-

truck, provide challenges for not only the state highway agency but local communities and other 

drivers. Although a significant breadth of research exists that has investigated large truck 

operations, safety, and crash experience, very limited research has been conducted to specifically 

look at OSOW vehicles. The research team noted that much of the previous literature combines 

OSOW trucks with traditional heavy trucks when considering crash experience. The primary 

objective of this research study is to fill the identified research gap and determine where OSOW 

trucks are traveling within and through the state of Kansas using KDOT’s K-TRIPS database, 

which has not been previously evaluated. 

Secondary objectives include evaluating which industries have applied for OSOW permits, 

where they are traveling, and whether there are yearly trends indicated within the data. Finally, the 

research team will perform a safety analysis of OSOW truck crashes in the state of Kansas and 

develop a statistical model to determine commonality of these crashes to predict crash severity 

using significant variables.  

This report is comprised of four chapters. Chapter 1 includes the study background and 

literature review; Chapter 2 covers the research objectives; Chapter 3 details the research 

methodology, gives analysis and discusses the results of the K-TRIPS study, and covers the OSOW 

crash study; and Chapter 4 discusses the significant findings of the report. In addition to the four 

chapters there are: a list of references; Appendix A, which gives the full K-TRIPS permit cost list; 

and Appendix B, which shows the code used to develop the logistic regression used in this study. 
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Chapter 3: Research Methodology 

To haul an OSOW load across or within the state of Kansas, a truck operator, trucking 

company, or forwarder must register its load with the Kansas Department of Transportation 

(KDOT), who will issue a one-time or annual permit. A relevant permit price list for this project 

can be found in Table 3.1, while a full K-TRIPS permit price list can be found in Appendix A. 

OSOW permit distributions are administered by a software package called the Kansas 

Truck Routing and Intelligent Permitting System (K-TRIPS), which is a simple secure interface to 

input vehicle data for all OSOW trucks that travel through Kansas. K-TRIPS has been in operation 

since December 2013 and catalogs data collected for each permit, which can be extracted at a later 

time for analytics. It should be noted that K-TRIPS can only give information on permits that were 

issued to companies who apply for one, as many OSOW vehicles travel across or within the state 

of Kansas without a permit. Any OSOW load without a permit is subject to being stopped by a law 

enforcement officer and could potentially have to redistribute or unload the cargo (Uniform Act 

Regulating Traffic, 2016). For the purpose of this study, a permit issued was the same as a trip 

taken.  

The research team requested OSOW permit data from a private consultant who manages 

the K-TRIPS system for KDOT. Four years of data were extracted (2014–2017) as shapefiles 

(.shp). A total of 288,642 permits were issued by KDOT during the four-year period. Over these 

four years it was found that the number of OSOW permits dropped, as shown in Table 3.2; 

approximately 633 fewer OSOW permit were issued per month in 2017 than in 2014.  

Table 3.1: K-TRIPS permit price list (K-TRIPS, 2018) 
Permit Type Price 

Standard Annuals $150.00 

Overdimension Oversize and/or Overweight $20.00 

Overdimension Poles, Beams, and Girders $20.00 

Overdimension Large Structure $30.00 

Overdimension Superload $50.00 

Harvest Overdimension $10.00 



8 

Table 3.2: OSOW permits by year in the State of Kansas 
Year OSOW Permits Change from Prev. Year 

2014 75,571 N/A 

2015 74,735 -836

2016 72,966 -1,769

2017 65,370 -7,596

The private consultant provided monthly permit data and every row entry of the database 

was a permit issued. Variables for each permit included: permit ID, permit type, gross vehicle 

weight (GVW) (lb), length of vehicle (inches), width of vehicle (inches), height of vehicle (inches), 

industry code, load description, origin, destination, number of axles, axle span, axle weight, axle 

width, and proposed trip length. Table 3.3 summarizes this data, including the corresponding 

minimum, maximum, and average values for each variable. A unique feature K-TRIPS offers 

permit applicants is a recommended route based on the variables inputted by the applicant. The 

route must be taken by the carrier. Failure to follow this route puts the carrier at risk of receiving 

a citation from law enforcement. Carriers with annual permits may choose their own route based 

on their dimensions (which should be inputted into K-TRIPS) so they can select a safe route to 

travel. Additionally, K-TRIPS does provide critical information regarding routes in Kansas, 

especially when an OSOW vehicle has to cross over or under a bridge structure. Unique trucks and 

OSOW superloads, in many instances, may need KDOT to conduct an engineering study on bridge 

structures if K-TRIPS flags the vehicle description and proposed destination. 
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Table 3.3: Permit variables: minimum, maximum, and average values 
Variable Minimum Maximum Average 
Permit ID - - - 

Permit Type - - - 

GVW (lb) 14 1,307,000 133,606.4 

Length (in) 36 5,134 1,141.3 

Width (in) 2 1,608 137.1 

Height (in) 1 480 169.0 

Index Code - - - 

Load Description - - - 

Origin - - - 

Destination - - - 

Number of Axles/veh. 7.49 7.79 7.6 

Axle Span (in) 0 2,136 139.9 

Axle Weight (lb) 1 61,400 18,038.3 

Axle Width (in) 0 282 112.0 

Trip Length (mi) 0.1 1,323 198.3 

 3.1 ArcMAP Model – No Special Characters 

The geographical information system (GIS) ArcMAP was used to analyze these data. The 

suggested routes the K-TRIPS system generated were placed over a map of roadways in Kansas. 

This was done to get a better visual representation of where the OSOW loads were traveling. 

ArcMAP has tools that can organize datasets to whatever combination is desired. In this case, the 

data were received in 48 separate .shp files, but the research team wanted to see how trip routes 

change from year to year or how different industries’ routes changed on a yearly basis. Using the 

organizational tools available, ArcMAP had the ability to create models to get data into the desired 

order and grouping.  

Two different models were used to extract data from the monthly files. Some industries 

could be run as an iteration, as they didn’t have any character restrictions such as hyphens or 

dashes, while some had to be run individually using a different model due to the aforementioned 

character restrictions. For example, the model shown in Figure 3.1 was created to make files for 
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each individual industry that did not have a special character in the name of the industry code. 

Figure 3.1 shows the coding blocks and features used for the iteration process.  

First, the desired industry names were entered into the ‘Multiple Value’ parameter control. 

The list of names was then inputted into the ‘Iterate Multivalue’ iterator. This function reads each 

industry name, one at a time, and outputs them into the ‘Value’ variable. For example, when this 

model is executed, the ‘Iterate Multivalue’ iterator takes the first value shown in the ‘Multiple 

Value’ parameter control (which in this case would be “General Construction Equipment”) and 

puts it into ‘Value.’ This value is what the variable will remain until the model has completely 

finished one cycle, then the model will move to the next name on the list until every name within 

the ‘Multiple Value’ parameter control has been used. After the ‘Value’ variable is set, the model 

then moves on to the ‘Select Layer by Attribute’ tool. The dialogue box is shown in Figure 3.2  

Figure 3.1: Model used to create industry files (no special characters) 
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Figure 3.2: 'Select Layer by Attribute' tool dialogue box 

Figure 3.3: 'Query Builder' dialogue box 

The first input line shown in Figure 3.2 is for the file that will be run, which were the 

individual monthly shape files for this study. The selection type was set as ‘NEW_SELECTION’ 

so that when the model was iterated through, it only selected the trips for that industry, and not 

any other industry. The expression input was what tied this part of the model to the iterative tool. 
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The structured query language (SQL) button, which is circled in Figure 3.2, opened up a dialogue 

box called a query builder that helped build the desired expression. This query builder is shown in 

Figure 3.3. 

The query builder had a list of all the fields within the file being used in the ‘Select Layer 

by Attribute’ tool. IND_CODE was selected so the model would search through the types of 

industries, ‘LIKE’ was selected so the model would know to search for names similar to the value 

in whichever variable is to be listed next in the query, and %Value% was used so the model knew 

to search for the Industry code that was like the name that was currently in the ‘Value’ variable. 

With all three of these fields identified, the ‘Select Layer by Attributes’ tool created a temporary 

file with just the trips that had the Industry code that was being held in the ‘Value’ variable. This 

temporary file was then the input file of the ‘Copy Features’ tool. This tool copied all of the 

features in the input file and created a separate file with just the information that had been selected 

in the ‘Select Layer by Attributes’ tool. The location of the file was given as ‘%Value%.shp’ to 

create a shapefile with the name of the industry it belonged to. The file was then inputted to the 

‘Select Layer by Attribute’ tool, and the model could then run its course. The file input name and 

the file location output were both made into model parameters, so they could be changed with each 

month of data and each different industry.  

In summary, this model used an inputted file and selected all of the data points that have 

the value that is next in the ‘Iterate Multivalue’ tool. It then copied all of those trips and made a 

separate shape file for each industry that was identified. Finally, it saved the files under the name 

of the industry. This process was done for each of the 48 months in the data set. This model worked 

extremely well except for the fact that ArcMAP will not save files with special characters (such as 

– or /), so none of the industries with these characters could be run using this model.

 3.2 ArcMAP Model – Special Characters Included 

A similar model as to the one shown in Figure 3.1, was created for the industries with 

special characters in their name; this model is shown in Figure 3.4. The main difference is this 

model was unable to iterate through each industry file, and they had to be run individually. 
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Figure 3.4: Model used to create industry files (special characters included) 

As shown in Figure 3.4, the second model developed had the ability to change what was 

selected from the files; it does not just have to be the industry code. The ‘Expression’ parameter 

had the same dialogue box as Figure 3.3 and could select whatever parameter was needed. For 

example, a specific permit type, weight of vehicle, or destination of the truck. The only drawback 

found with this model was that each industry needed to be inputted individually so ArcMAP could 

save the files. For example, if the industry code was “Wind Energy – Tower Section,” the file 

would need to be saved as “Wind Energy Tower Section” for the program to save to a folder. This 

had to be done manually in the ‘.shp’ model parameter for each run of the model. After creating 

separate files for each industry and specific permit types, each file for each month was combined, 

using the ‘Merge’ tool, for each year. This resulted in four different files (one for each year) for 

each industry, as well as all the different permit types. The same merging process was performed 

for each month of each year, to make four separate files representing every trip from each year. In 

total, 92 different files were created; there were 22 different industries/permit types for four total 

years, as well as four full year files.  

Each of the 92 developed files then had the ‘Kernel Density’ tool run on them. The Kernel 

Density tool “calculates a magnitude-per-unit area from point or polyline features using a kernel 

function to fit a smoothly tapered surface to each point or polyline” (Kernel Density, 2017). This 

function outputted a “heat map” that illustrated, in the case of this study, the density of trips along 

certain roads throughout the state of Kansas. The higher the density, the more trips there were 

within that area. The scales of each industry were set to be the same for all four years of data in 
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order to show how the flow of the loads might have changed over the time period. A heat map was 

needed because, as Figure 3.5a shows, the number of trips on any given section of roadway could 

not be identified visually looking at the raw shape file. Figure 3.5a and Figure 3.5b illustrates what 

a file looked like prior to and after running the Kernel Density tool. 

Figure 3.5: Kernel Density results 

Shown in Figure 3.5, the legend that Kernel Density creates is the actual density, or the 

total length of trips within a search area. The map area was set in decimal degrees, in order to input 

latitudes and longitudes of crash data later in the study. However, this did not create density 

magnitudes that are commonly used. The units that were created by the Kernel Density were 
Decimal Degrees

Decimal Degrees2
.

The main take away from these maps is to see how the flow of OSOW vehicles throughout 

the state, for certain industries, changed from year to year. Each file had an attribute table that gave 

each vehicle’s dimensions, weight, load type, etc., but the length of each trip was not recorded. 

The trip length was then calculated by ArcMAP and added to the table for each industry. The tables 

from each file were then exported to Microsoft Excel; graphs and charts were then produced to 
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better visualize how the data changed throughout the four years, as well as how much they stayed 

constant.   

 3.3 Data Introduction 

As stated previously, K-TRIPS provides a wealth of information through user inputted 

variables to understand freight movement through the state of Kansas through an electronic 

permitting system. The variables coded into K-TRIPS are similar for OSOW trucks (e.g., GVW, 

dimensions, number of axles, etc.). The research team was particularly interested in the industry 

code and where significant industries are hauling OSOW freight within or passing through the 

state of Kansas. Using ArcMAP, the research team joined the monthly OSOW permit .shp files to 

create yearly .shp files to investigate possible changes (if any) in routing from year to year. Each 

month was also separated into the individual industries, and then merged together to have complete 

year files for each industry. Shown in Figure 3.6 are the number of permits for each industry type 

per year for four consecutive years. 

Industries were arranged by total number of permits over the entire study period, with each 

year being represented separately. It was found that five different industries filed the most permits 

with K-TRIPS: general construction equipment, general freight, wind energy, oil and gas 

equipment, and agricultural equipment/implements. These industries were responsible for 252,115 

of the 288,642 total OSOW permits, or approximately 87 percent. Additionally, these five 

industries were evaluated in two different ways, as steady or fluctuating industries.  
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Figure 3.6: OSOW permits for type of industry (2014‒2017) 

As shown in Figure 3.6, the general construction equipment, general freight, and 

agriculture equipment/implements industries were considered steady industries, based on the 

consistency of routes travelled and the limited changes in the number of trips taken each year. 

General construction equipment was found to have the highest number of trips taken over the four-

year study period with a total of 74,169 trips, an average of 18,542 per year. This industry was 

also the most consistent of the top five in the number of trips made per year, with only a 7.3 percent 

fluctuation between the highest and lowest permit counts within the study period (18,953 in 2014 

to 17,564 in 2017). General freight and agricultural equipment/implements had similar trends, with 

10.8 percent and 35.1 percent fluctuations, respectively.  

The other two industries found to have a high number of OSOW permits were wind energy 

and oil and gas equipment. These two industries were considered fluctuating industries, because 

of the variation in the number of trips taken, as well as the routes travelled during the trips. The 
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wind energy industry was the best example of a fluctuating industry. The number of permits needed 

were based on how many wind turbines components needed to be shipped out of the lay-down 

yards around the state, with the largest lay-down yard located in Garden City, Kansas. KDOT 

corroborated, as Figure 3.6 illustrates, that 2016 was a very busy year for the wind energy industry 

which resulted in a higher number of permits. The data also indicated the industry as a whole saw 

a 17.8 percent increase in trips from 2015, and a 92.5 percent increase from 2014. A total of 19,016 

trips were taken by the wind energy industry in 2016, the highest amount of any industry during 

the study period. As shown in Table 3.6, in 2017 the demand lowered, and the number of permits 

fell by 37.5 percent to only 11,877. While the wind energy industry experienced an increase in the 

number of trips, the oil and gas equipment industry was experiencing a decrease in the number of 

trips. The oil and gas equipment industry saw a 50.6 percent decrease in trips from 2014 to 2016 

(10,082 to 4,978 permits), followed by a 24.2 percent rebound in 2017 (6,185 permits). 

Besides understanding which industries apply for OSOW permits most often through the 

K-TRIPS system, the research team was also interested in where these OSOW trucks were

traveling. As stated previously, K-TRIPS provides required routes for OSOW trucks to travel

based on their load-inputted data (depending on their permit, one-time versus annual).

Additionally, in 2016, KDOT, with the input from the Kansas Freight Advisory Committee

(KFAC) designated specific Interstate and U.S. Highways within Kansas as freight corridors.

Figure 3.7a shows freight corridors, and Figure 3.7b provides interstate and highway locations

compared to communities in Kansas as a reference (KDOT, 2017).
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Figure 3.7: (a) Freight corridors of significance (KDOT, 2017); (b) Significant interstates, 
highways, and communities in Kansas 
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As shown in Figure 3.7a, three types of roadways were identified: interstates, U.S. 

highways, and Kansas secondary state highways. These corridors were identified by the Kansas 

Freight Advisory Committee based on the National Highway Freight Network (NHFN), which 

were defined under the previous federal transportation authorization, referred to as MAP-21 

(KDOT, 2017).  

To determine OSOW freight routes taken by specific industries and specified by K-TRIPS, 

the research team used the yearly .shp files and created heat maps using ArcMAP’s kernel density 

tool. In other words, K-TRIPS provided routing for each permit as a line file and the research team 

wanted to understand how many lines were on top of one another, indicating more than one trip 

was made over a certain roadway section. The easiest way to quantify the line density to indicate 

the number of trips being made over a certain line section was a heat map which changed color 

based on the number of trips detected. This was accomplished by converting coordinate system 

produced by K-TRIPS (in decimal degrees) into a unit coordinate in which ArcMAP could easily 

display the data. Line decimal degrees (length of the line) were then divided by decimal degrees 

squared (arc of the line). Although this conversion does not make physical sense because decimal 

degrees are not a common unit of measurement, the results of the conversion provided a unique 

way to display line data on a traditional GIS map that are commonly used by KDOT. 

 3.4 OSOW Permit Routes 

A critical aspect to this research project was exploring where OSOW freight moved 

through the state of Kansas. As stated previously, dedicated freight corridors have been defined in 

Kansas. These roadways (including Interstates, U.S. Highways, and Kansas secondary highways) 

are routes that have been found to have a greater presence of large trucks. Additionally, the state 

of Kansas has increased safety and operational efficiency on some of these routes including the 

addition of guardrail, leveling slopes, installing wider shoulders, and constructed passing lanes. 

Using the routing data from K-TRIPS and establishing the top five OSOW industries as described 

previously (general construction freight, general freight, wind energy, oil and gas equipment, and 

agricultural equipment/implements), route densities were developed. The kernel density function 

as described previously was used to develop heat maps of the most traveled routes for each of the 
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top five industries. The kernel density function in ArcGIS cannot distinguish between trips traveled 

on roadways that intersect each other. This means that when two heavily trafficked routes 

intersected, the density was found to be higher than the individual routes before the intersection of 

routes. Figure 3.8 through Figure 3.13 show results of the routing analysis using heat maps. In 

order to explain the maps presented herein, communities and U.S. highways within the state of 

Kansas will be used as references as to what the research team believed was occurring. 

Additionally, Figure 3.7b can be used as a reference. As a higher-level evaluation of the K-TRIPS 

routing data, Figure 3.8 shows a summary of all OSOW permits and roadways having the highest 

number of trips by year. 

As shown in Figure 3.8, the highest density of OSOW truck travel was in the year 2015 at 

the intersection of I-135 and I-70, which is a significant intersection of north-south, east-west 

interstates near the middle of the state. Since 2015, this location was found to have the highest 

density of the four years. Because of this, all further map densities (including Figure 3.9 through 

Figure 3.13) were set to the 2015 color heat-map scale as a reference.  

Many OSOW routes consistently were among the highest travelled from 2014 to 2016 

which included: I-70 from Kansas City, KS, to the Colorado border in Western Kansas; I-35 from 

the Oklahoma border north to Wichita, KS (note that parts of I-35 in Kansas have a toll facility 

and an additional permit is required); I-35 from Emporia, KS, to Kansas City, KS; I-135 from 

Wichita, KS, to Salina, KS; US-81 from Salina, KS, north to the Nebraska border; US-83 from 

Oklahoma border north to the Nebraska border; and US-54 from Liberal, KS, to Minneola, KS. 

These routes were found to carry a majority of the OSOW trips taken on interstates and Kansas 

highways in the four-year study period. However, as stated previously, some identified industry 

routing remained constant and some routing fluctuated within the study period. Industries with 

OSOW routes that remained constant were found to be the reason the previously mentioned routes 

show up boldly on the full-year heat maps. Industries that were found to have high variability in 

trips every year were the reason why new routes stood out, or other routes became more travelled. 

The research team then isolated each industry for evaluation. Figure 3.9 shows the heat map for 

general construction equipment. 
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As shown in Figure 3.9, The general construction equipment industry, as stated before, was 

found to be consistent from year to year. The heat map supports this claim by illustrating how 

similar the routes were for the four-year study period. The primary routes taken by the OSOW 

trucks (with slight deviation each year) included I-70 and I-35 across the state of Kansas and I-135 

North and South within the state of Kansas. Additionally, it was found that lesser-traveled routes 

were consistent among the study period as well as indicated by the heat maps. This indicated that 

not only were similar amounts of trips being travelled by this industry, but they seem to be taking 

very similar routes each year.  

The research team also evaluated the general freight industry routes similar to the general 

construction equipment industry routes. While the number of trips was found to be not as consistent 

and dense as the general construction equipment industry (10.8 percent difference from the largest 

to smallest yearly total), the routes were nearly as consistent throughout the four-year study period 

as general construction equipment, as shown in Figure 3.10. The main routes that were found to 

be taken by the OSOW trucks remained constant throughout the study period, with only slight 

variations in trip density, although slightly more variant than what was found for general 

construction equipment OSOW trips. Similar to the general construction equipment industry, I-70, 

I-35, and I-135 across the state of Kansas were found to be the main routes taken by these trucks.

Additionally, it was found that even the lesser-traveled routes were found to be almost consistent

with similar densities during the study period. It was also found that US-54 and US-81 were less

traveled by OSOW trucks than the interstate routes but were found to be very consistent year to

year. Additionally, it was found that the routes on US-83 started out being a common route for

OSOW trucks in 2014 but became less traveled as the years progressed through the study period.

This indicated not only that similar amounts of trips were being travelled by OSOW trucks for this

industry, but they were consistent each year from 2014 to 2016. The research team also evaluated

OSOW truck trips taken by the agriculture equipment/implements industry using the same

methodology as described for the previous two industries. It was found that this industry followed

the same routing trends as general construction equipment and general freight industries. However,

it was noted that the agriculture equipment/implements industry had a far greater difference in the

number of trips taken. It was found that there was approximately a 35.1 percent difference in the
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number of trips taken from the largest to smallest yearly total during the study period. It was noted 

that this difference in trips taken resulted in the heat map showing the highest yearly trip totals 

were more involved than the beginning years of the study period and this can be clearly seen in 

Figure 3.11. Knowing that the number of trips taken by this industry were higher for the year 2014 

than remaining years of the study period, it can be expected that more routes would have registered 

on the 2014 map. However, it was found the routes mainly taken from 2014 also appeared in the 

other three years of data; however, at a lower density. The analysis of the agriculture 

equipment/implements industry found that the highest traveled routes by OSOW trucks were I-35 

and I-135 across the state of Kansas; US-81, US-50, and US-54 were also found to be predominant 

routes. The analysis of the agriculture equipment/implements industry found that many of the 

OSOW trucks traveled on the following routes: I-35 and I-135 across the state of Kansas were the 

highest traveled routes, US-81, US-50, and US-54 were found to be the other predominant routes. 

The research team also investigated two other industries that were believed to be highly 

influenced by changes in demand, federal and state policy, and destination for hauling the OSOW 

freight within the state. These were the wind energy industry and the oil gas equipment industry, 

both of which have a significant presence in the state of Kansas.  

To investigate these trip-fluctuating industries, the research team first evaluated the trips 

taken by OSOW trucks for the wind energy industry. The yearly analysis is shown in Figure 3.12. 

As shown, the wind energy industry was found to predominately take different routes each of the 

study years. Looking at the year 2014, the OSOW trucks mainly traveled on US-83 from Liberal, 

KS, to Norton, KS (using US-383, which is not illustrated in Figure 3.7b), and from Liberal, KS, 

to Minneola, KS, along US-54. However, it was found in 2016 the routes shifted and US-83 (as 

described previously) became a low-density traveled route by OSOW trucks. However, highways 

between Garden City, KS, Dodge City, KS, and Kinsley, KS, became the dominant routes. It 

should be noted that a wind turbine lay-down yard is located just outside of Garden City, Kansas. 

Overall, the maps presented in Figure 3.12 indicate a fluctuating change in route demand and a 

fluctuating use of routes by the industry in response to changes in overall demand of wind turbine 

components year to year. As stated previously, wind energy trips were found to have increased by 

92.5 percent in a two-year period during the four-year study period. The breakdown of trips for 
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wind energy were as follows: 14 percent in 2014; 22 percent in 2015; 26 percent in 2016; and 18 

percent in 2017. 

The research team also investigated another OSOW trip-fluctuating industry, the oil and 

gas equipment industry. This industry, similar to wind energy, is the result of demands and 

changing energy policy both in Kansas and at the federal level of government. The analysis of data 

showed that unlike the wind energy industry, which changed predominant routes around the state 

of Kansas yearly, the oil and gas equipment industry had one main route. This route was US-83 

and the number of trips taken on this route varied year to year. It was found that from 2014 to 

2016, this gas and oil equipment industry had a 50.6 percent decrease in trips taken. This decrease 

in trips (or density of lines) can be clearly viewed in the heat maps for those respective years in 

Figure 3.13. One noted difference by the research team between the oil and gas equipment industry 

and the other four major industries that utilized OSOW routing in the study was the fact that the 

number of trips in 2017 increased from the number of trips in 2016, all other major industries 

had fewer trips in 2017 than 2016. 

Overall, the research team believes the construction equipment, general freight, and 

agriculture equipment/implements industries show consistent OSOW routing for the four-year 

study period in similar different corridors within the state of Kansas. The research team also 

believes these industries had established routing within and through the state of Kansas prior to 

the study period and are currently not influenced heavily by changes in technology or national and 

regional demand. It is recommended that KDOT and metropolitan planning organizations (MPOs) 

in the state of Kansas look to these industries for safety improvement and long-term planning 

considerations when it comes to OSOW vehicle traffic on Interstates and highways.  

The research team did confirm that KDOT was alerted in 2016 to the changes in the number 

of OSOW trips for the wind energy industry, and again in 2017 for a decrease in the number of 

OSOW truck trips. Additionally, the wind industry expected to increase the number of OSOW 

trips in 2019 as the demand for wind energy continues to increase. These alerts by the industry 

have allowed KDOT to refine K-TRIPS and also target engineering studies for bridge structures. 

The research team believes advanced notification for more industries would increase safety 

operations for OSOW trucks.
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Figure 3.8: Heat maps for all OSOW trips in Kansas (2014‒2017) 
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Figure 3.9: Heat map for all general construction equipment OSOW trips in Kansas (2014‒2017) 



26 

Figure 3.10: Heat map for all general freight OSOW trips in Kansas (2014‒2017) 
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Figure 3.11: Heat maps for all agriculture equipment/implements OSOW trips in Kansas (2014‒2017) 
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Figure 3.12: Heat map for all wind energy industry OSOW trips in Kansas (2014‒2017) 



29 

Figure 3.13: Heat maps for all oil and gas equipment OSOW trips in Kansas (2014‒2017) 
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 3.5 OSOW Crashes 

 3.5.1 Data Description 

Confirming that a significant percentage of the OSOW truck loads were following the 

Kansas freight corridors with other trucks shown in Figure 3.7a, the research team investigated 

OSOW truck crashes, which were constrained to the Kansas freight corridors. Using crash data 

extracted by KDOT from the Kansas Crash Analysis and Reporting System (KCARS), which 

included truck crash data in which at least one truck was involved, this dataset also included 

OSOW truck crash data. The research team merged the extracted crashes with the Kansas freight 

corridor roadway layer (Figure 3.7a) using ArcMAP. Isolating OSOW truck crashes, a total of 148 

crashes were recorded from 2014 to 2016 in which the crash involved at least one OSOW truck, 

or an OSOW truck involved with at least one other vehicle (either another truck or passenger car). 

The research team was also interested in the location of the OSOW crashes, and wanted to 

determine if roadway geometric features, traditional roadway safety devices (e.g., guardrail), or 

roadside hazards were significant variables in these crashes, especially in rural areas. Similar to 

investigating the routes of OSOW trucks, a heat map was generated to determine where clusters 

of OSOW crashes occurred (2014 to 2016) on the Kansas freight corridors (Figure 3.7a) and are 

shown in Figure 3.14 where areas of red indicate more than one crash in a particular area occurred. 

As shown in Figure 3.14a, purple areas were generally found to be a single OSOW crash 

while blue and purple areas were found to represent more than one OSOW crash. It should be 

noted that the heat-map areas could be extended for multiple miles because of the scale of the heat 

map used. Two mass-action areas were selected for further investigation, which are shown 

in Figure 3.14b and Figure 3.14c. Figure 3.14b shows that two crashes occurred on I-70, east of 

Collyer, Kansas. As shown, there was only one data point visible in this image because 

both crashes occurred at the same location over a period of two years. Both of these crashes were 

caused by the OSOW truck striking the bridge-structure on the 150th Avenue overpass of I-70. 
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Figure 3.14: (a) Heat map for all OSOW crashes from 2014–2016; (b) Western Kansas 
crash cluster; (c) Central Kansas crash cluster 

The research team believes this analysis could save considerable damage to the 

infrastructure in Kansas and recommends that KDOT deploy appropriate low-cost 

countermeasures at this location, which may include enhanced bridge height signs and/or targeted 

delineation. Figure 3.14c shows a second identified location where multiple OSOW crashes 

occurred during the study period. This location was the Crawford Street and I-135 interchange in 

Salina, Kansas. Three OSOW crashes were identified during the study period which all involved 
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roadway guardrail strikes. One of the identified crashes occurred at the off-ramp on I-135 South, 

the second crash occurred at the on-ramp to I-135 South, and the third occurred on Crawford Street 

itself. Upon further investigating the interchange area, it is recommended that KDOT enlarge the 

clear zone distance, increase the guardrail lateral distance from the roadway, as well as enlarge the 

intersection turning radius to accommodate OSOW trucks.  

 3.5.2 Descriptive Statistics 

As stated previously, a total of 148 crashes involving OSOW vehicles were extracted for a 

study period from January 1, 2014, to December 31, 2016. To investigate what geometric, 

environmental, and driver variables might have influenced the result of the crash, descriptive 

statistics were performed on the crash data variables. Crash severity during the study period ranged 

from fatal crashes to property damage only crashes. It was found that most of the recorded crashes 

were property damage only (PDO) crashes, with 117. Additionally, there were 29 injury crashes 

and two fatal crashes as shown in Figure 3.15.  

Additionally, time of day when the crash occurred was analyzed and it was found that the 

largest number of OSOW trucks crashes occurred between 2:00 pm and 3:59 pm. The full data set 

is shown in Figure 3.16. It was found that between 2:00 am and 3:59 pm the number of crashes 

show a natural increase in frequency, and then decreases between 4:00 pm and 1:59 am. It is worth 

noting that both recorded fatal crashes occurred during the 2:00 pm to 3:59 pm time period.  

Day of the week was also investigated in the the crash analysis and is shown in Figure 3.17. 

It was found that the two most common days for an OSOW crash were on Thursday and then 

Friday. Additionally, the two days that were found to have the lowest number of OSOW truck 

crashes were Saturday and Sunday.  

Crash data also indicated that OSOW crashes occurred on two different pavement types 

during the study period, concrete and asphalt. There were 57 crashes that occurred on concrete and 

91 that occurred on asphalt. Additionally, the pavement condition was evaluated and shown in 

Figure 3.18. 117 crashes occurred under dry road conditions and 20 more occurred while the road 

was wet. The other 11 crashes occurred with pavement having ice, snow, or slush present.  
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Roadway geometry was also considered and shown in Figure 3.19. It was found that 106 

crashes occurred on straight and level roadways, while 25 crashes occurred on straight and 

graded/sloped roadways. The remaining 17 crashes occurred on roadways that were curved (both 

level and sloped) or straight at a hillcrest.  
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Figure 3.15: Crash Severity (2014‒2016) 
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Figure 3.16: Time of Crash (2014‒2016) 
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Figure 3.17: Day of week at time of crash (2014‒2016) 
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Figure 3.18: Pavement surface conditions at time of crash (2014‒2016) 
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Figure 3.19: Roadway characteristics at time of crash (2014‒2016) 
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Figure 3.20: Weather conditions at time of crash (2014‒2016) 
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Figure 3.21: First harmful event of crash (2014‒2016) 
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Weather conditions at the time of the crashes were also analyzed and are shown in Figure 

3.20. It was found that approximately 115 crashes occurred under no adverse conditions. 

Additionally, 10 occurred while it was raining, misting, or drizzling. Finally, six occurred while 

freezing rain, mist, or drizzle existed. Eight crashes occurred during strong winds/blowing dust, 

sand, etc. The remaining nine occurred with weather conditions of snow, snow and wind, rain and 

fog, smoke, sleet/hail, unknown.  

One of the most important variables when investigating crashes is the first harmful event 

(FHE), or the event the crash sequence is based on. Shown in Figure 3.21, approximately 69 of the 

crashes were found to have an FHE of a motor vehicle in transport. This means that 47 percent of 

crashes involved an OSOW load making contact with another vehicle while moving on the 

roadway. Another 41 crashes had an FHE of hitting a fixed object, or an object in or near the clear 

zone that cannot be physically moved easily. Additionally, 18 crashes involved striking an animal, 

11 were classified as other/non-collision, seven were overturns/rollovers, and the remaining two 

were with other objects.  

Overall, it was found that a majority of crashes occurred with ideal driving conditions 

which included: 79 percent occurred on dry pavement; 78 percent occurred with no adverse 

weather conditions; 72 percent occurred on a straight and level road; 56 percent occurred between 

10:00 am and 7:59 pm, and 47 percent had a motor vehicle in transport as the FHE. 

 3.5.3 Regression Analysis 

Data from the 148 identified OSOW crashes were analyzed for statistically significant 

variables at a 90 percent confidence level. Each OSOW crash had an associated crash report in 

which the police officer at the scene of the crash recorded what was observed. The response 

variable for the statistical model was crash severity or the seriousness of the crash. A logistic 

regression was selected as the appropriate statistical model framework with the available variables 

from the crash reports. A logistic regression was selected in place of a traditional linear regression 

where the response variable was categorical instead of quantitative. Since the OSOW crash data 

showed the injury and fatal crash categories not exceeding 30 observations individually, these two 

severities were combined in order to have a significant regression. Backwards selection of 
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significant variables was used to determine which variables would be included in the model. The 

general form of a logistic regression is given below in Equation 3.1. The full R-coding used for 

the final model development can be found in Appendix B. 

𝒍𝒍𝒍𝒍𝒍𝒍 � 𝒑𝒑
𝟏𝟏−𝒑𝒑

� =  𝜷𝜷𝒍𝒍 +  𝜷𝜷𝟏𝟏𝑿𝑿𝟏𝟏 +  𝜷𝜷𝟐𝟐𝑿𝑿𝟐𝟐 + ⋯+  𝜷𝜷𝒌𝒌𝑿𝑿𝒌𝒌 Equation 3.1 

Where:  

𝑝𝑝 = proportion of fatal/injury crashes compared to total crashes 

𝛽𝛽𝑘𝑘 = estimates 

X = parameters 

k = number of parameters 

For the OSOW crash dataset, the 𝜷𝜷𝒍𝒍 was found to be not significant at the 90 percent 

confidence level, so it was removed from the model. A summary of the variables tested as well as 

the p-value are shown in Table 3.4. 

Table 3.4: Variables included in the final logistic regression 
Parameter Estimate Standard Error z value Pr(>|z|) 

FHE: Other non-collision 2.165 1.082 2.001 0.0454 

FHE: Overturned/Rollover -1.434 1.181 -1.215 0.2244 

FHE: Motor vehicle in-transport 1.628 0.7940 2.050 0.0403 

FHE: Animal 19.61 1448 0.014 0.9892 

FHE: Fixed object 3.561 0.9259 3.846 0.0001 

FHE: Other object 18.79 4599 0.004 0.9967 

Surface Type: Asphalt 0.8458 0.5060 1.671 0.0946 

Time of Crash -9.365 x 𝟏𝟏𝟏𝟏−𝟒𝟒 4.761 x 𝟏𝟏𝟏𝟏−𝟒𝟒 -1.967 0.0492 

As shown in Table 3.4, significant variables found that had a p-value less than 0.1 (90 

percent confidence level) are shown in bold. These variables include FHE: other non-collision, 

FHE motor vehicle in transport, FHE: fixed object, surface type: asphalt, and time of crash. 

The FHE indicates what the “first harmful event” of the crash was, according to the police report 

filed for each crash. ‘FHE: Motor vehicle in transport’ means the first harmful event of the 
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crash was the OSOW load hitting another motor vehicle while it and the other vehicle were both 

driving. All other FHE variables can be explained in a similar way, with the ‘other’ categories 

being what the officer’s labeled certain crashes that did not fall into any of the other variables.  

It was found that there were only two different pavement types in the dataset: concrete and 

asphalt. ‘Surface Type: Asphalt’ showed that for this model, asphalt pavement was the predictor 

of crash severity. All of the FHE variables and the Surface Type variable were binary variables 

(“yes” or “no”). This means, for example, that a crash can either have an FHE be a fixed object 

hit, or not. The only exception in this dataset was the ‘Time of Crash’ which was considered a 

continuous variable having a range between zero and 2400 hours. It should also be noted that even 

though backwards selection was used to select significant variables, there were still insignificant 

variables in the model with a p-value greater than 0.10. The reason for this was that the 

insignificant variables were all categorical predictors as part of the FHE variable. This means that 

long as any of the FHE causes were significant, all of them needed to stay as predictors in the 

model. 

In order to determine how much more likely a fatal or injury (F/I) crash was based on the 

developed logistic regression, the estimates were taken out of natural log form. This is performed 

by taking the value “e” and raising it to the 𝛽𝛽𝑘𝑘 power. This provided the odds ratio for a selected 

variable in the model. For a specific binary variable that was significant in this model, if the odds 

ratio was larger than one, the odds of an F/I crash occurring if the predictor did happen were 𝑒𝑒𝛽𝛽𝑘𝑘 

higher than the odds of an F/I crash occurring if the predictor did not happen. For example, when 

an OSOW crash occurred with an FHE categorized as an ‘other non-collision’ the estimate was 

found to be 2.165. Since the estimate was larger than zero, the variable will increase the odds of 

an F/I crash occurring. To find out how much the odds increase, the value “e” is raised to the power 

of the estimate for that variable. For an FHE: Other non-collision, the odds of that crash being an 

F/I crash were 𝑒𝑒2.165 = 8.7 times larger than the odds of it being an F/I crash without the FHE 

being categorized as ‘Other non-collision.” The odds ratios for each of the significant variables are 

shown in Table 3.5. 
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Table 3.5: Odds ratios of significant variables 
Parameter Estimate Odds Ratio 

FHE: Other non-collision 2.165 8.71 

FHE: Motor vehicle in-transport 1.628 5.09 

FHE: Fixed object 3.561 35.2 

Surface Type: Asphalt .8458 2.33 

Time of Crash -9.365 x 10−4 .999 

For all of the FHE significant variables to have odds ratios greater than 1 seemed logical. 

It was expected that the odds of a F/I crash occurring were higher when an OSOW vehicle struck 

another moving vehicle or a fixed object, compared to that of an OSOW vehicle not striking one 

of those variables. The positive odds ratio for the asphalt surface type also seemed logical as well. 

With a high number of centerline miles in Kansas consisting of two-lane rural highways (many of 

which are paved with asphalt and have little to no shoulder) it was understandable that this surface 

type had a higher odds ratio for a crash to be F/I.  

When the continuous variable had an odds ratio less than one, it meant that for every one-

unit increase in the variable, the odds would be 𝑒𝑒𝛽𝛽𝑘𝑘 times less than before the increase. Also, if an 

odds ratio was less than one, then the odds of the response happening decrease by (1-odds ratio) 

×100 percent. For example, the odds ratio for the ‘Time of Crash’ predictor was 0.999. This 

indicated that for every one unit increase in the time of the crash, the odds of an F/I crash occurring 

decrease by (1-.999) ×100 percent, or 0.1 percent. This same method can also be applied to hourly 

changes. The odds of an F/I crash occurring at 1:00 am (100 in the model) were 10 percent lower 

than an F/I crash occurring at 12:00 am (000 in the model). This was found to have a minimal 

decrease in odds from hour to hour. However, it was found that a crash being later in the day does 

decrease the odds of a crash being an F/I crash. While this variable is statistically significant, it is 

inconclusive based on the extracted crash data. It was found that with all the F/I crashes extracted 

for four years, approximately 29 percent (9 out of 31 crashes) occur prior to 12:00 pm, while 39 

percent (56 out of 148 crashes) of the overall crashes occurred prior to 12:00 pm. At this time, it 
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is inconclusive why the model is producing counterintuitive results, with the significant number 

of crashes occurring in the second half of the day (afternoon and evenings) for both F/I and all 

other crashes, but the model showing that it is less likely to be in an F/I crash later in the day. The 

best hypothesis is that the sample size and other variable may be influencing the time or data 

variable estimate.  

The AIC (Akaike Information Criteria) value for the final model was 130.14. By itself, that 

number is fairly insignificant, so it was compared to the original model’s AIC of 165.12. A lower 

AIC value indicates a model with better fit, or a more accurate description of the data being used. 

The code found under R-code used for Backwards Selection in Appendix B was used to find the 

model that had the lowest possible AIC value. That code selected the final model, with the results 

presented in Table 3.4. The final model having the lowest AIC of any of the models proposed in 

the backwards selection means that it was the best possible model to help predict OSOW crash 

severity, given the data provided.  

Although the developed logistic regression analysis provided insight into OSOW crashes 

in Kansas, it is recommended a further analysis be undertaken. As described previously, exposure 

due to changing travel patterns by each industry, changes in roadway features, and other 

characteristics may influence the overall model development. More crash data and associated K-

TRIPS data are needed to verify the current statistical model. 
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Chapter 4: Significant Findings 

 4.1 Discussion of Results 

Oversize and overweight trucks and the freight they haul are an integral part of the 

movement of freight across the United States. As a subset of large truck traffic, OSOW trucks are 

unique in that many times their dimensions (length, width, height, and weight) make the movement 

of their corresponding freight a challenge to move down the roadway. The state of Kansas is an 

integral, and many times required, pass-through point across the country by both large trucks and 

OSOW trucks due to its east-west and north-south interstate access (I-70, I-35, and the Kansas 

Turnpike Authority Roadways) as well as key U.S. Highway and state routes. With an average of 

more than 72,000 OSOW permits granted by KDOT per year through its K-TRIPS electronic 

permitting system, the primary objective of this study was to evaluate historical data collected by 

K-TRIPS and perform analyses to determine trends in the data, including evaluating the industries

that typically apply for OSOW permits, the routes these trucks take, and also the safety experience.

The results of the analysis are expected to assist KDOT with future policy and engineering

decisions regarding permitting and routing of OSOW vehicles moving throughout the state.

Four years of K-TRIPS data were evaluated (2014‒2017) and OSOW permits were isolated 

for the entire truck permitting database. When considering OSOW permits, approximately 87 

percent of the permits were distributed to five industries: general construction equipment, general 

freight, agriculture equipment/implements, wind energy, and oil and gas equipment. The general 

construction equipment industry showed a prominent set of fixed annual routes that do not vary 

greatly during the study period. The routing for two other industries followed this trend as well; 

the general freight industry and the agriculture equipment/implements industry both showed 

minimal deviation from routes recorded between 2014 and 2017. However, the wind energy 

industry and oil and gas equipment industry were found to not have a consistent set of routes during 

the study period. It was found that the routes of both industries changed every year of the study 

period. The research team believes, and there was also evidence as stated by KDOT, that deviation 

was mainly due to the changing economic conditions as well as the need to transport energy 

equipment to certain parts of the state each year. 
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The wind energy industry was also found to be highly variable each year during the study 

period. This was found by evaluating the taken routes, but also the number of permits issued. The 

number of permits issued saw an approximately 93 percent increase from 2014 to 2016. By 

comparison, the general construction equipment industry only saw a 7.3 percent difference in 

permits issued between its highest and lowest years within the study period. 

Along with evaluating which industries made up the significant number of the trips in the 

state of Kansas, the research team also analyzed the safety effects of OSOW trucks by performing 

a crash analysis and model development during the same time period. Mapping the crash data 

provided by KDOT, it was found that two locations had multiple OSOW truck crashes with the 

same recorded sequence of events. At one of the locations, two separate bridge strikes occurred on 

the same overpass located at I-70 outside of Collyer, Kansas. The other location had three OSOW 

trucks strike a guardrail at the same interchange located on I-135 in Salina, Kansas. The descriptive 

statistics showed that of the 148 OSOW truck crashes during the study period, 31 crashes were 

either a fatal or injury crash. Approximately 79 percent of the crashes occurred with dry pavement 

conditions, 72 percent occurred on a straight and level road, and 78 percent occurred under no 

adverse weather conditions. Additionally, 56 percent of crashes occurred between 10:00 am and 

7:59 pm. The analysis of crash variables indicated that OSOW truck crashes in Kansas occurred 

under normal driving conditions. To determine what crash variables were significant when 

predicting OSOW crash severity, a logistic regression was developed using a 90 percent 

confidence level since the primary output was binary (fatal/injury crash, or PDO crash). A 

backwards selection was used in order to find the model with the lowest AIC value, making it the 

best predictor of crash severity possible with the data available for this study. It was found that 

three separate first harmful event categories (Other non-collision, Motor vehicle in-transport, and 

Fixed object) were significant and all increase the odds of a fatal/injury crash occurring, if they 

were the FHE. If the pavement surface was asphalt, the odds of a fatal or injury crash are higher 

than if the pavement is concrete. Lastly, the later into the day it gets, the lower the odds are to be 

in a fatal or injury crash for OSOW loads. 

This study provided KDOT with critical information on multiple fronts based on both K-

TRIPS data as well as corresponding crash data. The research team recommends to KDOT 
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distribution of industry information to companies and to provide this report as a part of the K-

TRIPS system. Additionally, the research team recommends that KDOT investigate mass-action 

areas identified by the crash analysis and make safety improvements to the two identified locations. 

 4.2 Limitations and Future Research 

Although this study was conducted with the best available data provided by KDOT, 

limitations were identified throughout the research process. First, K-TRIPS has only been in 

operation with KDOT since December 2013 and crash data was only available (and verified) 

through 2016. With only four years of OSOW permit data and only three years of crash data to 

analyze, this particular study can only reveal so much as to how the amount of OSOW vehicles on 

the road correlates to the number and severity of crashes. Furthermore, the research team 

recommends evaluating additional crash and K-TRIPS data to verify initial findings in this report.  

Another limitation identified by the research team was the accuracy of the data inputted by 

truck companies and owner/operators into the K-TRIPS web portal. There were numerous permits 

with values that, presumably, did not match up with the units asked for in the software. When 

speaking with KDOT representatives familiar with K-TRIPS, they speculated that these errors 

were caused by any of three different reasons: 

• The user only entered the weight/dimensions of the load, not the entire vehicle;

• The user entered weight values in kips, not pounds; and

• User error / mistyping.

Finally, it was found that there is not a viable way to incorporate exposure on routes 

travelled into this study. The permits issued did not have dates on them as many of the permit types 

are able to be used for extended periods of time, not just a single day. With that being the case, 

there is no way to accurately estimate when and where an individual truck is traveling, or how 

many trucks are traveling past a particular section of road on any given day. 

It is recommended that KDOT work with their private consultant to minimize these errors 

to enhance future studies evaluating the K-TRIPS OSOW truck permits. Since the information 

provided in K-TRIPS was relatively new, there are many different additional research projects that 

could stem from this study. To start, this study could be replicated as often as KDOT would like 
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in order to keep track of the major industries that apply for OSOW permits in the state of Kansas. 

Of particular interest is further analyses of the two fluctuating route industries (wind energy and 

oil and gas equipment). It would be advantageous to see where those loads are traveling, at what 

time of the year, and how the routes are changing. Along those same lines, a pavement study is 

recommended along the highly travelled routes. This could give KDOT a better estimate on 

pavement life of these routes in Kansas. Knowing how much these loads weigh, along with the 

axle information, an analysis on the amount of ESALs on a particular stretch of road can be done 

and can be compared to the anticipated usage of that road. This study could serve as a guide to 

what parts of the highway network need to be analyzed for safety, taxed heavier, or reconstructed 

sooner.  

 4.3 Contribution to Highway Safety 

The research team found a unique and important connection between yearly heat maps of 

OSOW truck routing and OSOW crashes. Crashes were found to occur at locations in Kansas 

where the highest-travelled routes during the three years of the dataset were recorded by K-TRIPS. 

These findings were similar to previous research that indicated through statistical analyses that 

when the percentage of trucks increased on a roadway, the amount of predicted crashes increased. 

This finding could be a primer for the state of Kansas to upgrade safety measures on known truck 

corridors that experience a high number of OSOW trucks. The ability to reduce fatal or serious 

injury crashes involving OSOW would have a positive net benefit for the state of Kansas, however, 

considerable investment will be needed by the state to address all OSOW crash concerns. 
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Appendix A: K-TRIPS Permit Price List  

Table A.1: K-TRIPS Permit Price List (Current as of 7/05/2018) 
Permit Type Price 

Standard Annuals $150.00 
Annual Special Vehicle Combination $50.00 
Annual SVC Company Fee $2000.00 
KTA Access Annual $10.00 
Hay – Five Year Hay $25.00 
Overdimension Oversize and/or Overweight $20.00 
Overdimension Poles, Beams, and Girders $20.00 
Oil Service Rig Single Trip $20.00 
Overdimension Large Structure $30.00 
Overdimension Superload $50.00 

Fuel & Registration 3 Day Permit Fuel - $25.00 
Registration - $46.00 

Fuel 10 Day Permit $88.00 
Fuel 24 Hour $13.00 
Fuel 7 Day Permit $63.00 
Fuel 72 Hour $25.00 

Harvest 30 Day Permit Foreign Based 

20,001‒24,000: $46.00 
24,001‒26,000: $51.50 
26,001‒30,000: $51.50 
30,001‒36,000: $59.38 
36,001‒42,000: $71.88 
42,001‒48,000: $88.13 

48,001‒54,000: $113.13 
54,001‒60,000: $143.13 
60,001‒66,000: $168.13 
66,001‒74,000: $208.75 
74,001‒80,000: $233.75 

80,001 or Greater: $258.75 
Harvest 30 Day Permit Kansas Based $46.00 

Harvest 60 Day Permit Foreign Based 

20,001‒24,000: $49.50 
24,001‒26,000: $68.67 
26,001‒30,000: $68.67 
30,001‒36,000: $79.17 
36,001‒42,000: $95.83 

42,001‒48,000: $117.50 
48,001‒54,000: $150.83 
54,001‒60,000: $190.83 
60,001‒66,000: $224.17 
66,001‒74,000: $278.33 
74,001‒80,000: $311.67 

80,001 or Greater: $345.00 
Harvest Overdimension $10.00 
KTA Access 6 Month $5.00 
Liquid Fuel Temporary $5.00 

Registration 30 Day 
20,001‒24,000: $46.00 
24,001‒26,000: $51.50 
26,001‒30,000: $51.50 
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30,001‒36,000: $59.38 
36,001‒42,000: $71.88 
42,001‒48,000: $88.13 

48,001‒54,000: $113.13 
54,001‒60,000: $143.13 
60,001‒66,000: $168.13 
66,001‒74,000: $208.75 
74,001‒80,000: $233.75 

80,001 or Greater: $258.75 
Registration 6 Day $92.00 
Registration 72 Hour $46.00 
Registration 9 Day $138.00 
Registration Beyond Local $46.00 
Registration Dealer Demo $46.00 
Registration Dealer Demo 15 Day $120.00 
Unladen Vehicle Registration $46.00 
Weight 6 Day $92.00 
Weight 72 Hour $46.00 
Weight 9 Day $138.00 
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Appendix B: R-code Used 

 R-code used for the Final Logistic Regression Model 
m1<- 
glm(ACCIDENT_SEVERITY~as.factor(ACCIDENT_CLASS_FHE)+as.factor(ON_ROAD_SU
RFACE_TYPE)+(TIME_OF_ACCIDENT)-1 

, family= binomial, data = data) 
 
summary(m1) 
 
Deviance Residuals: 

Min   1Q   Median  3Q   Max 
-2.89831  0.00009  0.39785  0.68975  1.45133 

 
Coefficients: 
 

Estimate  Std. Error  z value Pr(>|z|) 
as.factor(ACCIDENT_CLASS_FHE)0  2.165e+00  1.082e+00  2.001  0.04544 * 
as.factor(ACCIDENT_CLASS_FHE)1  -1.434e+00  1.181e+00  -1.215  0.22447 
as.factor(ACCIDENT_CLASS_FHE)3  1.628e+00  7.940e-01  2.050  0.04038 * 
as.factor(ACCIDENT_CLASS_FHE)7  1.961e+01  1.448e+03  0.014  0.98919 
as.factor(ACCIDENT_CLASS_FHE)8  3.561e+00  9.259e-01  3.846  0.00012 *** 
as.factor(ACCIDENT_CLASS_FHE)9  1.879e+01 4.599e+03  0.004  0.99674 
as.factor(ON_ROAD_SURFACE_TYPE)2  8.458e-01  5.060e-01  1.671  0.09464 . 
TIME_OF_ACCIDENT    -9.365e-04  4.761e-04  -1.967  0.04920 * 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 205.17 on 148 degrees of freedom 
Residual deviance: 114.14 on 140 degrees of freedom 
AIC: 130.14 
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 R-code used for Backwards Selection 

m<- 
glm(as.factor(ACCIDENT_SEVERITY)~as.factor(ACCIDENT_CLASS_FHE)+as.factor(ON_R
OAD_SURFACE_TYPE)+(TIME_OF_ACCIDENT)+as.factor(ACCIDENT_CLASS_MHE)+ 

as.factor(DAY_OF_ACCIDENT)+as.factor(ON_ROAD_SURFACE_TYPE)+as.factor(ON_RO
AD_SURFACE_COND)+as.factor(ON_ROAD_SURFACE_CHAR)+as.factor(ACCIDENT_L
OCATION)+as.factor(ALCOHOL_INVOLVEMENT)+as.factor(WEATHER_CONDITIONS)-
1, family= binomial, data = data) 

> back<- step(m) 
Start:  AIC=165.12 
as.factor(ACCIDENT_SEVERITY) ~ as.factor(ACCIDENT_CLASS_FHE) +  
    as.factor(ON_ROAD_SURFACE_TYPE) + (TIME_OF_ACCIDENT) + as.factor(ACCIDEN
T_CLASS_MHE) +  
    as.factor(DAY_OF_ACCIDENT) + as.factor(ON_ROAD_SURFACE_TYPE) +  
    as.factor(ON_ROAD_SURFACE_COND) + as.factor(ON_ROAD_SURFACE_CHAR) +  
    as.factor(ACCIDENT_LOCATION) + as.factor(ALCOHOL_INVOLVEMENT) +  
    as.factor(WEATHER_CONDITIONS) - 1 
 
                                     Df  Deviance     AIC 
- as.factor(ACCIDENT_LOCATION)     8    79.688   153.69 
- as.factor(WEATHER_CONDITIONS)    10    85.954   155.95 
- as.factor(DAY_OF_ACCIDENT)        6    79.291   157.29 
- as.factor(ON_ROAD_SURFACE_COND)   4    75.665   157.66 
- as.factor(ACCIDENT_CLASS_MHE)     4    78.368   160.37 
- TIME_OF_ACCIDENT                   1    75.495   163.50 
- as.factor(ON_ROAD_SURFACE_CHAR)   4    82.790   164.79 
<none>                                     75.122   165.12 
- as.factor(ON_ROAD_SURFACE_TYPE)   1    77.526   165.53 
- as.factor(ALCOHOL_INVOLVEMENT)    1    77.907   165.91 
- as.factor(ACCIDENT_CLASS_FHE)     5    93.696   173.70 
 
Step:  AIC=153.69 
as.factor(ACCIDENT_SEVERITY) ~ as.factor(ACCIDENT_CLASS_FHE) +  
    as.factor(ON_ROAD_SURFACE_TYPE) + TIME_OF_ACCIDENT + as.factor(ACCIDENT
_CLASS_MHE) +  
    as.factor(DAY_OF_ACCIDENT) + as.factor(ON_ROAD_SURFACE_COND) +  
    as.factor(ON_ROAD_SURFACE_CHAR) + as.factor(ALCOHOL_INVOLVEMENT) +  
    as.factor(WEATHER_CONDITIONS) - 1 
 
                                     Df  Deviance     AIC 
- as.factor(WEATHER_CONDITIONS)    10    91.874   145.87 
- as.factor(ON_ROAD_SURFACE_COND)   4    80.800   146.80 
- as.factor(DAY_OF_ACCIDENT)        6    84.939   146.94 
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- as.factor(ACCIDENT_CLASS_MHE)     4    84.574   150.57 
- TIME_OF_ACCIDENT                   1    80.532   152.53 
<none>                                     79.688   153.69 
- as.factor(ON_ROAD_SURFACE_CHAR)   4    88.497   154.50 
- as.factor(ALCOHOL_INVOLVEMENT)    1    82.848   154.85 
- as.factor(ON_ROAD_SURFACE_TYPE)   1    82.959   154.96 
- as.factor(ACCIDENT_CLASS_FHE)     5   103.496   167.50 
 
Step:  AIC=145.87 
as.factor(ACCIDENT_SEVERITY) ~ as.factor(ACCIDENT_CLASS_FHE) +  
    as.factor(ON_ROAD_SURFACE_TYPE) + TIME_OF_ACCIDENT + as.factor(ACCIDENT
_CLASS_MHE) +  
    as.factor(DAY_OF_ACCIDENT) + as.factor(ON_ROAD_SURFACE_COND) +  
    as.factor(ON_ROAD_SURFACE_CHAR) + as.factor(ALCOHOL_INVOLVEMENT) -  
    1 
 
                                     Df  Deviance     AIC 
- as.factor(DAY_OF_ACCIDENT)        6    97.964   139.96 
- as.factor(ACCIDENT_CLASS_MHE)     4    94.731   140.73 
- as.factor(ON_ROAD_SURFACE_COND)   4    95.898   141.90 
<none>                                     91.874   145.87 
- as.factor(ON_ROAD_SURFACE_CHAR)   4   100.210   146.21 
- TIME_OF_ACCIDENT                   1    95.357   147.36 
- as.factor(ALCOHOL_INVOLVEMENT)    1    95.971   147.97 
- as.factor(ON_ROAD_SURFACE_TYPE)   1    96.292   148.29 
- as.factor(ACCIDENT_CLASS_FHE)     5   113.302   157.30 
 
Step:  AIC=139.96 
as.factor(ACCIDENT_SEVERITY) ~ as.factor(ACCIDENT_CLASS_FHE) +  
    as.factor(ON_ROAD_SURFACE_TYPE) + TIME_OF_ACCIDENT + as.factor(ACCIDENT
_CLASS_MHE) +  
    as.factor(ON_ROAD_SURFACE_COND) + as.factor(ON_ROAD_SURFACE_CHAR) +  
    as.factor(ALCOHOL_INVOLVEMENT) - 1 
 
                                     Df  Deviance     AIC 
- as.factor(ACCIDENT_CLASS_MHE)     4   101.947   135.95 
- as.factor(ON_ROAD_SURFACE_COND)   4   101.960   135.96 
- as.factor(ON_ROAD_SURFACE_CHAR)   4   104.173   138.17 
<none>                                     97.964   139.96 
- as.factor(ALCOHOL_INVOLVEMENT)    1   100.290   140.29 
- TIME_OF_ACCIDENT                   1   101.584   141.58 
- as.factor(ON_ROAD_SURFACE_TYPE)   1   102.004   142.00 
- as.factor(ACCIDENT_CLASS_FHE)     5   120.658   152.66 
 
 
Step:  AIC=135.95 
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as.factor(ACCIDENT_SEVERITY) ~ as.factor(ACCIDENT_CLASS_FHE) +  
    as.factor(ON_ROAD_SURFACE_TYPE) + TIME_OF_ACCIDENT + as.factor(ON_ROAD_
SURFACE_COND) +  
    as.factor(ON_ROAD_SURFACE_CHAR) + as.factor(ALCOHOL_INVOLVEMENT) -  
    1 
 
                                     Df  Deviance     AIC 
- as.factor(ON_ROAD_SURFACE_COND)   4    106.54   132.54 
- as.factor(ON_ROAD_SURFACE_CHAR)   4    108.86   134.86 
<none>                                     101.95   135.95 
- as.factor(ALCOHOL_INVOLVEMENT)    1    104.38   136.38 
- TIME_OF_ACCIDENT                   1    105.85   137.85 
- as.factor(ON_ROAD_SURFACE_TYPE)   1    106.59   138.59 
- as.factor(ACCIDENT_CLASS_FHE)     6    143.49   165.49 
 
Step:  AIC=132.54 
as.factor(ACCIDENT_SEVERITY) ~ as.factor(ACCIDENT_CLASS_FHE) +  
    as.factor(ON_ROAD_SURFACE_TYPE) + TIME_OF_ACCIDENT + as.factor(ON_ROAD_
SURFACE_CHAR) +  
    as.factor(ALCOHOL_INVOLVEMENT) - 1 
 
                                     Df  Deviance     AIC 
- as.factor(ON_ROAD_SURFACE_CHAR)   4    113.30   131.30 
<none>                                     106.54   132.54 
- as.factor(ALCOHOL_INVOLVEMENT)    1    108.87   132.87 
- TIME_OF_ACCIDENT                   1    109.95   133.95 
- as.factor(ON_ROAD_SURFACE_TYPE)   1    110.08   134.08 
- as.factor(ACCIDENT_CLASS_FHE)     6    147.70   161.70 
 
Step:  AIC=131.3 
as.factor(ACCIDENT_SEVERITY) ~ as.factor(ACCIDENT_CLASS_FHE) +  
    as.factor(ON_ROAD_SURFACE_TYPE) + TIME_OF_ACCIDENT + as.factor(ALCOHOL_
INVOLVEMENT) -  
    1 
 
                                     Df  Deviance     AIC 
- as.factor(ALCOHOL_INVOLVEMENT)    1    114.14   130.14 
<none>                                     113.30   131.30 
- as.factor(ON_ROAD_SURFACE_TYPE)   1    115.95   131.95 
- TIME_OF_ACCIDENT                   1    117.74   133.74 
- as.factor(ACCIDENT_CLASS_FHE)     6    159.53   165.53 
 
 
 
 
Step:  AIC=130.14 



55 

as.factor(ACCIDENT_SEVERITY) ~ as.factor(ACCIDENT_CLASS_FHE) +  
    as.factor(ON_ROAD_SURFACE_TYPE) + TIME_OF_ACCIDENT - 1 
 
                                     Df  Deviance     AIC 
<none>                                     114.14   130.14 
- as.factor(ON_ROAD_SURFACE_TYPE)   1    116.94   130.94 
- TIME_OF_ACCIDENT                   1    118.31   132.31 
- as.factor(ACCIDENT_CLASS_FHE)     6    159.85   163.85 

 




	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Background
	Chapter 2: Research Objectives
	Chapter 3: Research Methodology
	3.1 ArcMAP Model – No Special Characters
	3.2 ArcMAP Model – Special Characters Included
	3.3 Data Introduction
	3.4 OSOW Permit Routes
	3.5 OSOW Crashes
	3.5.1 Data Description
	3.5.2 Descriptive Statistics
	3.5.3 Regression Analysis


	Chapter 4: Significant Findings
	4.1 Discussion of Results
	4.2 Limitations and Future Research
	4.3 Contribution to Highway Safety

	References
	Appendix A: K-TRIPS Permit Price List
	Appendix B: R-code Used
	R-code used for the Final Logistic Regression Model
	R-code used for Backwards Selection




